
The Dynamic Distribution in the Fixed Cost Model:
An Analytical Solution

Jonathan J. Adams*

October 28, 2024

WORKING PAPER

Link to Most Current Version

Abstract

I derive an analytical solution to the Kolmogorov forward equation for a

fixed cost model. This is a challenging PDE, because the dynamic distribution

depends on the flow of resetting agents, which is endogenously determined by

the distribution itself. I show there is a shortcut that allows the flow function to

be derived without first finding the entire distribution of agents. This shortcut

is also valuable because many aggregate variables can be written in terms of

the flow function alone. As an example, I solve the canonical menu cost model.

In it, the analytical solution uncovers effects that are inconsistent with local

approximation methods. Specifically, the effects of shocks are both size and

state dependent. These nonlinearities are substantial; if a monetary shock is

sufficiently large, it can even reverse the sign of the effect on output.
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1 Introduction

Many economic decisions require paying fixed costs. But the macroeconomics of fixed

costs is challenging to study, because it often requires keeping track of an infinite-

dimensional state variable: the dynamic distribution of agents. The evolution of the

distribution is governed by a partial differential equation (PDE), the Kolmogorov

Forward Equation (KFE).1 This equation has proven difficult to solve, because it

depends on the flow of resetting agents, which itself is determined endogenously from

the dynamic distribution. As a result of this nonlinear feedback, theorists rely on

perturbation methods or other approximations to characterize aggregate behavior.

To address these challenges, I derive an analytical solution for the dynamic distri-

bution in a canonical fixed cost model. The key insight is that the endogenous flow of

resetting agents can be determined without first solving for the dynamic distribution

of states. This shortcuts the endogenous feedback that prevented solving the model.

Once the time path of the “reset flow” is known, the dynamic distribution is found

using a standard PDE solution. But the reset flow is even more valuable: many

macroeconomic variables that depend on the distribution can be calculated using the

reset flow alone, circumventing the need to calculate the dynamic distribution at all.

The results in this paper are useful for studying the effects of aggregate shocks

in the model, because the KFE determines how the distribution of agents responds

over time, and macroeconomic variables such as output or inflation are typically func-

tions of this distribution. The general model describes economic decisions subject to

a wide variety of frictions. This type of fixed cost model – with aggregate shocks

and a dynamic distribution governed by a KFE – appears in many examples, includ-

ing: investment adjustment costs (Baley and Blanco, 2021), hiring and firing costs

(Elsby and Michaels, 2019), information acquisition costs (Alvarez, Lippi, and Pa-

ciello, 2018), wage renegotiation costs (Blanco and Drenik, 2023), and most famously

menu costs (Golosov and Lucas Jr., 2007; Midrigan, 2011). I demonstrate the analyt-

ical solution by applying it to a menu cost model, and explore the effects of monetary

shocks. And while the example is a simple symmetric model, I show how extensions

with asymmetry, drift, and random resets can be transformed into the simple model

and solved in the same fashion.

1In most settings it would be more informative to use the term “Fokker-Planck equation”, which
is a specific type of KFE. But the Kolmogorov terminology is most common in economics, so I use
it as well.
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The analytical solution will be useful for addressing many theoretical and quan-

titative questions. But it also provides some immediate lessons. First, the solution

reveals that the effects of aggregate shocks are size-dependent. The impulse response

of a macroeconomic variable does not scale with shock size. Instead, the shock size

affects all features of the impulse response function, including the shape, immedi-

ate impact, and cumulative impulse response (CIR).2 Second, the effectsof aggregate

shocks are state-dependent. A shock will imply different impulse responses if it fol-

lows a previous shock immediately or with long delay; this echoes a classic result from

Caplin and Leahy (1997). The menu cost example in Section 5 demonstrates that

the size and state dependencies are nontrival. They are not even monotonic. And

the size-dependence is so strong that a large enough shock will change the sign of the

effect on output.

This is an improvement over existing methods. Historically, fixed cost models

employed clever assumptions such that the distribution was not a necessary aggre-

gate state variable (Caplin and Spulber, 1987; Caplin and Leahy, 1997). In recent

years, theorists have made considerable progress understanding the macroeconomics

of fixed cost models by utilizing a variety of approximations.3 Many researchers em-

ploy perturbation methods around the steady state distribution, which yields valid

conclusions for small, rare shocks. This approach is convenient to characterize lin-

ear relationships between aggregate variables (e.g. Gertler and Leahy, 2008; Auclert,

Rigato, Rognlie, and Straub, 2024) or to approximate their dependence on the distri-

bution (e.g. Alvarez and Lippi, 2014; Alvarez, Lippi, and Souganidis, 2023). Without

explicit linearization, Alvarez, Le Bihan, and Lippi (2016) derive a sufficient statistic

for the cumulative effect of small one-off shocks in the nonlinear model. However,

numerical solutions to the nonlinear model demonstrate that conclusions regarding

small rare shocks will not necessarily hold for large or frequent shocks (Golosov and

Lucas Jr., 2007; Cavallo, Lippi, and Miyahara, 2024). My analysis of the analytical

solution agrees.

The literature is aware of the limitations of local approximations to the nonlinear

2Empirically, the effects of cost shocks on price-setting exhibit strong size-dependence, which
Cavallo, Lippi, and Miyahara (2024) document using granular pricing data in the food and beverage
industry.

3The approximations discussed in this section have been useful for theoretical analysis of fixed
cost models. Further approximations are used for quantitative analysis, e.g. Midrigan (2011) and
many other papers use the Krusell and Smith (1998) method to encode the infinite dimensional
distribution.
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dynamics featured in fixed cost models. To address these issues, Alvarez and Lippi

(2022) make substantial progress by considering an alternative approximation: they

assume there is no “reinjection”, i.e. agents leave the distribution after resetting. This

method is useful for calculating certain impulse response functions (IRFs) in some

models. Specifically, if the aggregate variable of interest is calculated by integrating

an odd function over the distribution, and if the model is symmetric (e.g. there is no

drift in inflation or productivity) then the aggregate variable’s IRF without reinjection

is equivalent to the true IRF. Alvarez and Lippi go on to show that when these

conditions hold, the IRF shape is invariant to shock size. In contrast, the approach

in Section 3 develops the full analytical solution by finding and incorporating the

equilibrium reinjection behavior (the reset flow). Among other results, the analytical

solution gives the IRF for variables whose aggregating functions are not strictly odd,

and allows for models with drift.

The next section describes the canonical fixed cost model. Section 3 derives the

solution. Section 4 demonstrates how to express the dynamics for aggregate variables

in terms of the reset flow. Section 5 computes the solution in a menu cost model, and

demonstrates the size and state dependent effects of shocks. Section 6 concludes.

2 The Fixed Cost Model

This section introduces the canonical fixed cost model, which describes the distribu-

tion of agents who must pay a fixed cost to adjust some state variable. The model

abstracts from the specific microfoundations that generate this behavior, but it ap-

plies to a wide variety of economic decisions including the menu cost model presented

in Section 5. Solving agents’ optimal decisions is both well understood and also spe-

cific to the setting at hand; I focus on the general problem of solving the dynamic

distribution.4

There is a continuum of agents; at any time t, each agent is characterized by a

state variable x. Each agent’s state variable follows an independent Brownian motion.

When an agent’s state is sufficiently low (x ≤ a) or sufficiently high (x ≥ b) it is willing

to pay a fixed cost and reset its state to x = 0. The interval [a, b] with a < 0 < b is

assumed to be constant.

The distribution of agents’ states is h(x, t), a function on x ∈ [a, b] and t ≥ 0.

4See Stokey (2008) for a textbook treatment.
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Solving the fixed cost model entails finding the function h(x, t) that satisfies a number

of conditions:

1. The distribution satisfies the KFE:

∂th(x, t) = γ∂2xh(x, t) (1)

on the interval [a, 0) ∪ (0, b] where 2γt is the variance of the Brownian motion

over t units of time.

2. The continuity boundary condition: while h(x, t) might not be differentiable at

x = 0, it must be continuous.

3. The bounds a and b are absorbing barriers, implying the Dirchlet boundary

conditions

h(a, t) = 0 h(b, t) = 0

4. The distribution is consistent with the initial condition

h(x, 0) = ϕ(x)

5. Probability is conserved, i.e. for all t,∫ b

a

h(x, t)dx = 1

This is a very simple fixed cost model, but many models with more interesting features

including drift or random resets can be rewritten in this form with an appropriate

transformation (Section 5.4).

3 Solution

The solution approach is express the model as a standard PDE problem, albeit with an

additional unknown function, the reset flow of probability F (t), which will capture

the rate at which agents hit the barriers, reset, and reenter the distribution. It is

necessary to jointly solve for the functions describing the probability flow and the

distribution of agents.
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3.1 Expression as a Standard Problem

Most of this PDE problem is standard textbook material; this KFE is simply the

usual heat equation, except at x = 0. But the unusual boundary conditions prevent

application of Sturm-Louiville theory to easily solve the problem. How must the

function behave at x = 0 in order to satisfy probability conservation?

A variety of standard PDE problems have known solutions. I begin by rewriting

the model into a standard form, albeit with the inclusion of an additional unknown

function F (t). I define the reset flow F (t) as

F (t) ≡ γ∂xh(a, t)− γ∂xh(b, t)

This object represents the flow of probability out of the interval [a, b]. These agents

reset their state, and reenter the distribution at 0, i.e. there is a point-like source at

0 where probability enters at rate F (t).

Lemma 1 formalizes how this property is implied by the conservation assumption∫ b
a
h(x, t)dx = 1.

Lemma 1. The following non-homogeneous heat equation holds for x ∈ [a, b] and

t ≥ 0:

∂th(x, t) = γ∂2xh(x, t) + δ(x)F (t)

where δ(x) is the Dirac delta and F (t) is the reset flow.

Proof. The KFE (1) holds everywhere on the interval [a, b] except at 0:

∂th(x, t)− γ∂2xh(x, t) =

0 x ̸= 0

R(t) x = 0

for some residual unknown function R(t). Therefore, we can extend the KFE to the

entire interval by writing

∂th(x, t) = γ∂2xh(x, t) + δ(x)R(t)

The conservation assumption implies that the total density is unchanging:

0 = ∂t

∫ b

a

h(x, t)dx
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=

∫ b

a

(
γ∂2xh(x, t) + δ(x)R(t)

)
dx = γ∂xh(b, t)dx− γ∂xh(a, t)dx+R(t)

=⇒ F (t) = R(t)

Lemma 1 allows the model to be rewritten as a standard PDE problem, conditional

on F (t):

Problem 1.

∂th(x, t) = γ∂2xh(x, t) + δ(x)F (t)

h(a, t) = 0 h(b, t) = 0

h(x, 0) = ϕ(x)

for x ∈ [a, b], t ≥ 0

3.2 Useful Functions and the Conditional Solution

Define the ∂2x eigenfunction Xn(x) for n = 1, 2, 3... by

Xn(x) ≡ cos(
πn

b− a
a) sin(

πn

b− a
x)− sin(

πn

b− a
a) cos(

πn

b− a
x) (2)

and the ∂t eigenfunction Tn(x) by

Tn(x) ≡ e−λnt λn ≡ γ

(
πn

b− a

)2

Observe that Tn(t)Xn(x) solves the homogeneous PDE ∂th(x, t) = γ∂2xh(x, t) and

satisfies the boundary conditions h(a, t) = 0 and h(b, t) = 0.

This problem’s Green’s Function G(x, y, t) can be concisely written in terms of

these eigenfunctions as

G(x, y, t) ≡
∞∑
n=1

Xn(x)Xn(y)Tn(t) (3)

Moreover, any sufficiently regular function on the interval [a, b] can be written in

“Fourier space” by expressing it as an infinite sum of the Xn(x) eigenfunctions. In
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particular, the PDE solution will be written in terms of the Fourier basis as

h(x, t) =
∞∑
n=1

Sn(t)Xn(x)

Thus solving the model is equivalent to finding the series of Sn(t) functions.

With this notation in hand, Property 1 gives the textbook solution to the KFE

given the unknown reset flow F (t):

Property 1. Given F (t), the standard solution to the PDE Problem 1 is

h(x, t) =

∫ b

a

ϕ(y)G(x, y, t)dy +

∫ t

0

∫ b

a

δ(y)F (s)G(x, y, t− s)dyds (4)

See for reference Polyanin (2001, Sec. 1.1.1) or for an equivalent expression with-

out the Green’s function, see a standard PDE textbook such as Evans (2022, Sec.

2.3.1).5

3.3 The Reset Flow

The previous section gives the model solution conditional on the reset flow function

F (t) = γ∂xh(a, t)− γ∂xh(b, t). But the reset flow is itself determined by h(x, t). This

section describes how, and then demonstrates how to determine the reset flow in

isolation, i.e. without first knowing the solution for h(x, t).

Lemma 2. The reset flow F (t) is determined from the Sn(t) functions by

F (t) =
∞∑
n=1

θnSn(t)

where

θn ≡

2γ πn
b−a n odd

0 n even

Proof. In terms of the distribution h(x, t), the reset flow is given by

F (t) = γ∂xh(a, t)− γ∂xh(b, t)

5Alvarez, Lippi, and Souganidis (2023) also apply a standard heat equation solution to the KFE,
albeit without the endogenous reset flow.
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= γ

∞∑
n=1

Sn(t) (∂xXn(a)− ∂xXn(b))

The eigenfunction derivative is given by

∂xXn(x) =
πn

b− a

(
cos(

πn

b− a
a) cos(

πn

b− a
x) + sin(

πn

b− a
a) sin(

πn

b− a
x)

)
which implies

∂xXn(a) =
πn

b− a

(
cos2(

πn

b− a
a) + sin2(

πn

b− a
a)

)
=

πn

b− a

∂xXn(b) =
πn

b− a

(
cos(

πn

b− a
a) cos(

πn

b− a
b) + sin(

πn

b− a
a) sin(

πn

b− a
b)

)
=

πn

b− a

(
cos(

πn

b− a
a) cos(

πn

b− a
a+ πn) + sin(

πn

b− a
a) sin(

πn

b− a
a+ πn)

)

=

− πn
b−a n odd

πn
b−a n even

Therefore:

F (t) = 2γ
∑
n odd

πn

b− a
Sn(t)

Lemma 2 demonstrates precisely how the flow F (t) depends on Sn(t), the eigen-

function coefficients of the solution. This is valuable, because it allows for F (t) to be

determined by the next result.

Lemma 3. The Laplace transform L of the reset flow F (t) satisfies

L{F} =
α̂(s)

1− β̂(s)

where α̂ and β̂ denote Laplace transforms of the functions

α(t) ≡
∞∑
n=1

θnanTn(t) β(t) ≡
∞∑
n=1

θnbnTn(t)
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and the coefficient series an and bn are defined

an ≡
∫ b

a

ϕ(y)Xn(y) bn ≡ sin(
aπn

b− a
) (5)

Proof. Substitute for the Green’s function in the conditional solution (4):

h(x, t) =

∫ b

a

ϕ(y)
∞∑
n=1

Xn(x)Xn(y)Tn(t)dy+

∫ t

0

∫ b

a

δ(y)F (s)
∞∑
n=1

Xn(x)Xn(y)Tn(t−s)dyds

=
∞∑
n=1

Xn(x)Tn(t)

∫ b

a

ϕ(y)Xn(y)dy +
∞∑
n=1

Xn(x)Xn(0)

∫ t

0

F (s)Tn(t− s)ds

=
∞∑
n=1

Xn(x)anTn(t) +
∞∑
n=1

Xn(x)bn

∫ t

0

F (s)Tn(t− s)ds

Collect coefficients on Xn(x):

Sn(t) = anTn(t) + bn

∫ t

0

F (s)Tn(t− s)ds (6)

Then apply the weighted sum F (t) =
∑∞

n=1 θnSn(t) (Lemma 3):

F (t) =
∞∑
n=1

θnanTn(t) +
∞∑
n=1

θnbn

∫ t

0

F (s)Tn(t− s)ds

= α(t) +

∫ t

0

F (s)β(t− s)ds

Take the Laplace transform:

F̂ (s) = α̂(s) + F̂ (s)β̂(s) =
α̂(s)

1− β̂(s)

Lemma 3 allows the reset flow F (t) to be calculated without first knowing the

distribution h(x, t). Then Theorem 1 in the next section easily gives the solution for

h(x, t).

But the Lemma has further value. In many models, aggregate outcomes of interest
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depend on integrating some function over the distribution h(x, t). Section 4 shows

that the behavior of such aggregates over time can be calculated directly from the

flow without needing to find h(x, t) or evaluate any integrals.

3.4 Solution

Theorem 1 presents the analytical solution for the distribution of agents h(x, t), in

terms of the initial condition ϕ(x) and the known functions α̂(s) and β̂(s)

Theorem 1. The unique function solving Problem 1 is

h(x, t) =
∞∑
n=1

Xn(x)

(
anTn(t) + L−1

{
α̂(s)

1− β̂(s)

bn
s+ λn

})
Proof. The homogeneous solution (the first term in equation (4)) is∫ b

a

ϕ(y)G(x, y, t)dy =

∫ b

a

ϕy(y)
∞∑
n=1

Xn(x)Xn(y)Tn(t)dy

=
∞∑
n=1

anXn(x)Tn(t)

which follows from the definitions of the an sequence (equation (5)) and Greens func-

tion (equation (3)).

The non-homogeneous component (the second term in equation (4)) is∫ t

0

∫ b

a

δ(y)F (s)G(x, y, t− s)dyds =

∫ t

0

F (s)G(x, 0, t− s)ds

=
∞∑
n=1

bnXn(x)

∫ t

0

F (s)Tn(t− s)ds

The Laplace transform of the integral term is

L
{∫ t

0

F (s)Tn(t− s)ds

}
= F̂ (s)T̂n(s) = F̂ (s)

1

s+ λn
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So Lemma 3 implies that the non-homogeneous component can be written as

∞∑
n=1

bnXn(x)

∫ t

0

F (s)Tn(t− s)ds =
∞∑
n=1

bnXn(x)L−1

{
α̂(s)

1− β̂(s)

1

s+ λn

}

Finally, Problem 1 is a standard non-homogeneous heat equation problem, so its

solution must be unique given F (t) (Evans, 2022, Sec. 2.3 Thm. 5), and F (t) must

be unique per Lemma 3 because β̂(s) ̸= 1.

4 Using the Flow Function to Calculate Aggregate

Dynamics

The dynamics of aggregate variables depend on the distribution h(x, t). In many

cases, an aggregate variable Z(t) (or some transformation thereof) requires integrating

over the distribution by

Z(t) =

∫ b

a

fZ(x)h(x, t)dx (7)

for some function fZ(x). How easily the integral can be evaluated depends on the

functional form. This section works through some common examples.6

Without knowing anything about h(x, t), this integral could be challenging to

evaluate. But the examples in this section share a fortunate feature: the reset flow

function F (t) gives a shortcut for evaluating the integral without first finding the

distribution h(x, t).

4.1 Preliminaries

For some fZ(x) functions, the integral in equation (7) is simple to evaluate. Lemma

4 says that this is the case when
∫ b
a
fZ(x)Xn(x)dx is known. Then the next sections

give examples when this is true.

Lemma 4. If the integrals θZn ≡
∫ b
a
fZ(x)Xn(x)dx can be evaluated for all n, then

given the reset flow F (t), the aggregate variable Z(t) satisfies

6The representation in equation (7) also reveals the relationship with Alvarez and Lippi (2022).
When a = −b, and fZ(x) is an odd function, the IRF can be found easily by solving the model
without “reinjection”. Without reinjection, the reset flow is F (t) = 0, and the PDE reduces to a
standard homogeneous heat equation.
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Z(t) = αZ(t) +

∫ t

0

F (s)βZ(t− s)ds

with functions

αZ(t) ≡
∞∑
n=1

θZn anTn(t) βZ(t) ≡
∞∑
n=1

θZn bnTn(t)

Proof. Substitute h(x, t) =
∑∞

n=1 Sn(t)Xn(x) into equation (7):

Z(t) =

∫ b

a

fZ(x)

(
∞∑
n=1

Sn(t)Xn(x)

)
dx

=
∞∑
n=1

Sn(t)

∫ b

a

fZ(x)Xn(x)dx =
∞∑
n=1

θZnSn(t)

Equation (6) implies

Z(t) =
∞∑
n=1

θZn anTn(t) +
∞∑
n=1

θZn bn

∫ t

0

F (s)Tn(t− s)ds

= αZ(t) +

∫ t

0

F (s)βZ(t− s)ds

4.2 Aggregates as Functions of Average Exponentials

This section considers aggregate variables Z(t) that depend on an average exponential

function of the state:

Z(t) =

∫ b

a

eψxh(x, t)dx (8)

for some ψ. For example, in Golosov and Lucas Jr. (2007) x is the log markup gap, and

evaluating this integral gives an output gap (raised to some power). In investment

models, x is the log capital-productivity ratio, and evaluating this integral gives a

measure of aggregate capital. Applying Lemma 4 will do so, using the sequence given

by Proposition 1:
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Proposition 1. Given the reset flow F (t), the aggregate variable Z(t) defined by

equation (8) is given by Lemma 4 for the coefficients

θZn ≡ πn

b− a

eψa − eψb(−1)n

ψ2 +
(
πn
b−a

)2
Proof: Appendix A.1

4.3 Aggregates as Functions of the Average State

This section considers aggregate variables Z(t) that depend on the average state

(fZ(x) = x):

Z(t) =

∫ b

a

xh(x, t)dx (9)

Transforming the average state Z(t) yields an expression for many aggregate variables

of interest. For example, in the menu cost model studied by Alvarez, Ferrara, Gautier,

Le Bihan, and Lippi (2024), the aggregate output gap is proportional to the average

markup gap. Proposition 2 shows that the average state is simple to calculate from

the reset function:

Proposition 2. Given the reset flow F (t), the aggregate variable Z(t) defined by

equation (9) is given by Lemma 4 for the coefficients

θZn ≡ a− b(−1)n

πn
b−a

Proof: Appendix A.2

4.4 Aggregates as Functions of the Squared State

Dynamics of higher order moments may be valuable to calculate, for example to

study the dynamics of misallocation. This section considers the average squared

state (fZ(x) = x2):

Z(t) =

∫ b

a

x2h(x, t)dx (10)

which can be combined with Proposition 2 to calculate the time-varying variance.

Proposition 3. Given the reset flow F (t), the aggregate variable Z(t) defined by

equation (10) is given by Lemma 4 for the coefficients
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θZn ≡

(
a2(
πn
b−a

) + 2(
πn
b−a

)3
)

−

(
b2(
πn
b−a

) + 2(
πn
b−a

)3
)
(−1)n

Proof: Appendix A.3

4.5 The Laplace Transform and Cumulative Impulse Response

The solutions from Propositions 1, 2, and 3 have a common form; they only differ in

the appropriate αZ(t) and βZ(t) functions. This section describes some results that

are independent of the particular fZ(x) function.

It is often useful to work with the Laplace transforms directly, in which case

Ẑ(s) ≡ L{Z}(s) is neatly given by

Ẑ(s) = α̂Z + β̂Z(s)F̂ (s) = α̂Z + β̂Z(s)
α̂(s)

1− β̂(s)

For example, the Laplace transform allows for quick calculation of the cumulative

impulse response function. Ẑ(s) is a polynomial fraction; denote its partial fraction

expansion by

Ẑ(s) =
∞∑
j=0

ξZj
s+ ρZj

As a convention, let index j = 0 denote the zero pole, i.e. ρZ0 = 0.

Corollary 1 gives the cumulative impulse response from the partial fraction terms.

Corollary 1. The cumulative impulse response CIRZ =
∫∞
0
Z(t)dt− Z is

CIRZ =
∞∑
j=1

ξZj
ρZj

where Z ≡ limt→∞ Z(t) denotes the steady state value.

Proof. Use the inverse Laplace transform:

Z(t) =
∞∑
j=0

L−1{
ξZj

s+ ρZj
} =

∞∑
j=0

ξZj e
−ρZj t
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Then integrate, noting that Z = ξ0:∫ ∞

0

Z(t)dt− Z =

∫ ∞

0

∞∑
j=1

ξZj e
−ρZj tdt =

∞∑
j=1

ξZj
ρZj

Corollary 1 is useful in settings where Z(t) itself is relevant (e.g. investment mod-

els). At other times, the aggregate variable of interest first requires a transformation

to be written as Z(t) in a form satisfying equation (8) (e.g. the Golosov-Lucas output

gap). In such a setting, Z(t) will have to be untransformed first, and then integrated

directly.

5 Example: Monetary Shocks in a Menu Cost Model

This section presents a menu cost model resembling Golosov and Lucas Jr. (2007).

The setting is entirely standard, so I forgo description of the model’s microfounda-

tions.7

Firms must pay a fixed cost to change prices. The firm’s markup µ is the difference

between its log price p and log marginal cost w − z:

µ = p− w + z

where w is the constant economy-wide log nominal wage and z represents a firm-

specific log quality term. Firms face CES demand with constant optimal markup µ∗.

Therefore the state variable for the firm is its markup gap x:

x ≡ p− w + z − µ∗

Quality z follows a Brownian motion:

dz = σdW

where W is a Wiener process, independent across firms.

7Interested readers are referred to Alvarez, Ferrara, Gautier, Le Bihan, and Lippi (2024), who
offer a concise description, albeit with an approximation to the aggregation equation (11).
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Because firms face a fixed menu cost, their optimal behavior is to leave prices

unchanged for markup gaps in the interval x ∈ [−b, b]. For markup gaps outside this

interval, firms immediately reset to the optimal markup µ∗, which implies that the

markup gap x resets to 0. Thus, this menu-cost model is already in the form for

which Theorem 1 gives the solution. If the model featured trend inflation or random

price resets (the “Calvo-plus” class of models) a change of variables would first be

necessary to apply the theorem (Section 5.4).

Finally, aggregate output Y (t) in the Golosov-Lucas economy is determined from

the distribution by

Y (t)η(ϵ−1)αϵ−1e(ϵ−1)µ∗ =

∫ b

a

e(1−ϵ)xh(x, t)dx (11)

1/η is the intertemporal elasticity of substitution, ϵ is the elasticity of substitution

across firms’ output, and α denotes the marginal disutility of labor. 1− ϵ < 0 so if all

firms reduce their markups, output increases. The aggregate price level is determined

by

(P (t)/W (t))1−ϵ e(ϵ−1)µ∗ =

∫ b

a

e(1−ϵ)xh(x, t)dx

so Proposition 1 can be used to find the output function Y (t) and price level P (t).8

5.1 Medium Sized Monetary Shocks

In this section, I study a permanent unanticipated monetary shock to an economy

in the stationary distribution h̄(x).9 The monetary shock permanently increases the

nominal marginal cost of all firms by b. Accordingly, the shock decreases the markup

gap x by b for all firms.10 In the results that follow, I parameterize the model so that

b = 1. I also let σ2 = 1, implying that a firm’s productivity diffusion is standard

normal over one unit of time.

This shock pushes the [−1, 0] half of the stationary distribution (Figure 1a) to

8In this model, the aggregating function e(1−ϵ)x is not odd, so the approximation without rein-
jection cannot be used to calculate the aggregate IRF.

9Appendix B derives the stationary distribution, which is a triangle.
10It is assumed that the shock does not affect the inaction region. This assumption applies exactly

in some fixed cost models. More generally, it abstracts from possible general equilibrium effects,
although Alvarez and Lippi (2014) and Cavallo, Lippi, and Miyahara (2024) show that these effects
are negligible in the menu cost model.

17



(a) Stationary distribution h(x,∞) (b) Initial condition ϕ(x)

(c) Flow of price-resetting firms (d) Dynamic distribution h(x, t)

Figure 1: Effects of a Medium-Sized Shock

Notes: The results are calculated for an economy parameterized by −a = b = 1, σ = 1, η = 1, ϵ = 1,
and α = 1. The figures plot the response to a ∆ = 1 shock to the stationary distribution. The
dynamic plots for F (t) and h(x, t) begin at time t = 0.002.
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the lower bound −1. These firms immediately increase prices and reset their markup

gap to 0. Thus the initial condition has a 0.5 point mass at the origin. Additionally,

the shock shifts the [0, 1] positive half of the stationary distribution to the [−1, 0]

interval. Figure 1b plots these point mass and density components, which together

make up the initial condition ϕ(x) = h(x, 0).

Lemma 3 implies that the initial condition is sufficient to solve for F (t), the flow

of resetting firms. Figure 1c plots this function. The plot begins at t = 0.002, because

at t = 0 the flow is infinite. In the initial condition ϕ(x), many firms are near the

boundary a = −1, so the flow remains high for a while before falling below 2 = F ,

and then asymptoting back to this long-run value.

Figure 1d plots the entire distribution, again beginning at t = 0.002 because there

is a discontinuity at (x, t) = (−1, 0). The evolution explains why the reset flow is

non-monotonic. After the shock, many agents are near the boundary a = −1, so the

reset flow remains high. But they quickly diffuse over the boundary and the reset

flow falls. At the same time, the firms that reset on impact are slow to diffuse to

the upper and lower boundaries, so the flow actually falls below the limiting value

because most mass is far from the boundaries. Then in the long run, the distribution

h(x, t) approaches the triangular stationary distribution, and the flow approaches its

limit too.

5.2 Macroeconomic Effects of Aggregate Shocks: Size De-

pendence

One lesson to be learned from the analytical solution is that the effects of aggre-

gate shocks are size-dependent. This is because the flow of price-resetting firms is

endogenously determined by the size of the shock. Shock size has a straightforward

piecewise-linear effect on the initial condition h(x, 0). But shocks that shift the ini-

tial condition also distort the flow of resetting firms. Moreover, the size of the shift

affects the flow function F (t) non-linearly: larger shocks (up to some threshold) raise

the density of firms near a price-reset boundary. All non-negligible shocks have an

immediate large effect (F (0) is always infinite) but small shocks will lead to quick

returns to F , while large shocks will have slower convergence, as in Figure 1c.

To study size dependence, I consider permanent monetary shocks of arbitrary size

to the stationary distribution h̄(x). A shock of size ∆ reduces the markup gaps of
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all firms by ∆, shifting the distribution to the left and causing a mass of firms to

immediately reset prices.

Therefore, the initial condition associated with a ∆ size shock is for x ∈ [a, b]:

ϕ∆(x) = h(x+∆) + δ(x)

∫ a+∆

a

h(x)dx

The density component h(x + ∆) is written by defining h(x) = 0 for x /∈ [a, b].∫ a+∆

a
h(x)dx is the mass of firms that would be shifted left of the lower bound a,

except they reset prices and reappear at 0. To analyze the effects of the shock, I

calculate the impulse response function (IRF) for log output relative to the steady

state:

IRF Y (t) = log Y (t)− log Y (∞) (12)

Figure 2a demonstrates how shock size affects the shape of output’s dynamic be-

havior. The figure plots the IRFs for permanent monetary shocks to the stationary

distribution of firms. The smallest shock is size ∆ = 0.01, whose effects are well un-

derstood with current approximation methods. The monetary shock lowers markups,

raising aggregate output. Convergence after a small shock is relatively swift, because

the initial distribution ϕ0.01(x) is not far from the stationary distribution h(x). The

medium-sized shock (∆ = 0.6) has a much larger impact because more prices reset,

and the distribution ϕ0.6(x) is far from h(x), so there are large distortions to output

during the long time that it takes to converge.

However, the largest shock (∆ = 1.8) is very disimilar: the effect on output is

negative. Why? After a shock, some firms shift left by ∆, while the remaining firms

reset prices, shifting right by b. When ∆ is small, the leftward shift is small, even

though it affects most firms. So the rightward movement of resetting firms dominates,

and average x increases. But when ∆ is large, the leftward shift is large, and the

rightward shift of resetting firms is relatively small because they still only increase

their markup gap x by b, so the leftward shift dominates.

For this sign-reversal, it is crucial that the integral determining output is the

average value of e(1−ϵ)x (equation (11)). Average x always moves in the same direction

(Alvarez and Lippi, 2022) but average e(1−ϵ)x does not. To see why, consider the

extreme case: if the shock is ∆ ≥ 2, then the entire distribution collapses to 0. This

is a mean-preserving reduction in the variance of x, which must decrease the average
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(a) IRFs to Shocks of Different Sizes (b) Instantaneous Effects and CIRs

Figure 2: Size-Dependent Effects of Monetary Shocks on Output

Notes: The results are calculated for an economy parameterized by −a = b = 1, σ = 1, η = 1,
ϵ = 1, and α = 1. The IRFs are given by equation (12). Size-dependent figures plot ∆ shocks to
the stationary distribution.

value of the convex function e(1−ϵ)x by Jensen’s inequality. The sign-reversal is further

demonstrated in Figure 2b, which plots two summary statistics for a range of shock

sizes: the instantaneous effect and the cumulative deviation from the steady state

(CIR). Shock size ∆ has large effects on these statistics, and the relationships are not

even monotonic, let alone consistently signed. Moreover, these effects are not scaled

by shock size, as is sometimes reported. Rescaling by shock size would cause the

effects to fall off rapidly with ∆.

5.3 Macroeconomic Effects of Aggregate Shocks: State De-

pendence

A second lesson from the analytical solution is that effects of aggregate shocks are

state-dependent. It is easy to see why: consider two consecutive shocks of size b, as

studied in Section 5.1. If the second shocks follows immediately after the first shock,

it will be as if there is a large shock of size 2b. But if the second shocks occurs much

later once h(x, t) has nearly converged to the stationary distribution, then the shock’s

effect will closely resemble the original size b shock. And Figure 2b demonstrated that

these two cases imply different IRF shapes.

This form of state-dependence is somewhat unusual. Typically when working with
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(a) IRFs to Shocks with Different Delays (b) Instantaneous Effects and CIRs

Figure 3: State-Dependent Effects of Monetary Shocks

Notes: The results are calculated for an economy parameterized by −a = b = 1, σ = 1, η = 1, ϵ = 1,
and α = 1. The IRFs are given by equation (12). State-dependent figures plot small shocks τ time
after a ∆ = 1 shock to the stationary distribution.

PDEs, the solution can be neatly separated into a component that depends on the

initial condition and a component that depends on any forcing term. But this is not

the case in the fixed cost model, because the forcing term δ(x)F (t) (the re-entry of

resetting firms) is endogenously determined. This state-dependence can be seen from

the function α(t), which depends on the initial condition ϕ(x), and yet appears in

the solution for the reset flow F (t) (Lemma 3). As a result, a shock perturbing the

stationary distribution will not have the same effects as a shock following a sequence

of earlier shocks.

To demonstrate the state-dependence, I examine the effects of a pair of permanent

monetary shocks. Again, I calculate the output IRFs, which are now relative to the

counterfactual in which only the first shock occurs. The first shock has size b as in

Figure 1; then, it is followed by a small second shock of size ∆ = 0.01. The second

shock arrives τ time after the initial shock.

Figure 3a demonstrates state-dependence by plotting how the output response to

the second shock depends on the delay τ since the first shock. When the delay is

long (τ = 1) the IRF is nearly a shock to the stationary distribution. Accordingly,

the impulse response function closely resembles the result in Figure 2a. But as the

delay changes, the shape of the IRF changes. Figure 3b documents how the summary
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statistics change with the delay. The pattern is non-monotonic, but longer delays

eventually feature larger instantaneous and cumulative effects. As the delay gets very

long, the initial distribution approaches the stationary distribution, and the values

converge to the ∆ = 0.01 results from Figure 2b.

5.4 Model Extensions

Does the solution method for the simple fixed cost model apply more generally? Yes.

This section demonstrates how several common extensions can be rewritten as the

simple fixed cost model, albeit with a minor modification of the incoming flow of

firms.

Lemma 5. For a fixed point model with KFE

∂th(x, t) = γ∂2xh(x, t) + δ(x)eφ1t (F (t) + φ2)

the reset flow function is given by

F (t) = L−1

{
α̂φ(s)

1− β̂φ(s)

}

where

αφ(t) ≡
∞∑
n=1

θn

(
anTn(t) + φ2bn

∫ t

0

eφ1sTn(t− s)ds

)
βφ(t) ≡

∞∑
n=1

θnbne
φ1tTn(t)

Proof: Appendix A.4

Lemma 5 describes how to solve the modified problem (the proof closely follows

that of Lemma 3, which is a special case for φ1 = 1 and φ2 = 0) to find the reset flow

F (t). Property 1 can be applied and then untransformed to recover the solution to

the original problem.

Next, I show how three model extensions can be rewritten in the form of Problem

1 with a standard change of variables.

1. Non-zero resets Suppose x has inaction interval [x, x] with reset point x∗ ̸= 0,

where h(x, t) follows the KFE (1). Define x̃ ≡ x − x∗, and define h̃(x̃, t) ≡
h(x̃+ x∗, t). Then h̃(x̃, t) is in the standard form, described by Problem 1.
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2. Trend inflation If the money supply grows at a constant rate π̄, then the KFE

is given by

∂th(x, t) = γ∂2xh(x, t) + π̄∂xh(x, t) + δ(x)F (t)

with F (t) defined as usual. Define h̃(x, t) ≡ e
π̄2

4γ
t+ π̄

2γ
xh(x, t); its time derivative

satisfies

∂th̃(x, t) = γ∂2xh̃(x, t) + e
π̄2

4γ
tδ(x)F (t)

which uses that e
π̄
2γ
xδ(x) = δ(x). Lemma 5 gives the solution, using φ1 = π̄2

4γ
.

Typically, models with trend inflation feature non-zero resets, in which case this

transformation can be combined with (1).

3. Random resets In “Calvo-Plus” models, firms stochastically receive opportu-

nities to reset prices costlessly. If firms receive these options at rate ξ, this adds

a constant decay to the distribution, whose KFE is now given by:

∂th(x, t) = γ∂2xh(x, t)− ξh(x, t) + δ(x)(F (t) + ξ)

The additional ξ in the non-homogeneous term is because the inflow of firms at

x = 0 includes both the usual F (t) outflow paying menu costs, as well as the

outflow receiving free resets
∫ b
a
ξh(x, t)dx = ξ. Define h̃(x, t) ≡ eξth(x, t). This

distribution satisfies

∂th̃(x, t) = γ∂2xh̃(x, t) + δ(x)eξt (F (t) + ξ)

Lemma 5 gives the solution for φ1 = φ2 = ξ.

6 Conclusions and Next Steps

This paper presented the analytical solution to the fixed cost model’s dynamic dis-

tribution. This solution is valuable for understanding the macroeconomics of fixed

costs. It allows for theoretical characterization of the dynamic effects of aggregate

shocks on macroeconomic variables. And it provides an analytical shortcut that can

be used when computing quantitative results.

While the simple fixed cost model applies to a variety of economic settings, and

can be easily augmented with simple extensions, the method for deriving the solution
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will apply more generally. Whenever a KFE with endogenous resets needs solving

– be it with additional state variables, complementarities, aggregate forcing terms,

or other features – this paper’s method provides a way forward. Use the Fourier

representation and Laplace transforms to find the endogenous reset flow analytically,

then use textbook PDE solutions to solve for the distribution.

Finally, application to the menu cost model emphasized that size and state de-

pendence affect the transmission of aggregate shocks to macroeconomic outcomes.

These lessons suggest that further application of the theory developed in this paper

may help understand nonlinear or state-dependent effects of many other types of

macroeconomic shocks.
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A Additional Proofs

A.1 Proof of Proposition 1

Proof. derivative simplifies:

∂x

(
ψeψxXn(x)− eψx∂xXn(x)

ψ2 +
(
πn
b−a

)2
)

=
ψ2eψxXn(x) + ψeψx∂xXn(x)− ψeψx∂xXn(x)− eψx∂2xXn(x)

ψ2 +
(
πn
b−a

)2
=
ψ2eψxXn(x) +

(
πn
b−a

)2
eψxXn(x)

ψ2 +
(
πn
b−a

)2 = eψxXn(x)

which uses that ∂2xXn(x) = −
(
πn
b−a

)2
Xn(x).

Therefore∫ b

a

eψxXn(x)dx =
ψeψbXn(b)− eψb∂xXn(b)

ψ2 +
(
πn
b−a

)2 − ψeψaXn(a)− eψa∂xXn(a)

ψ2 +
(
πn
b−a

)2
By construction, Xn(b) = Xn(a) = 0:

=
eψa∂xXn(a)− eψb∂xXn(b)

ψ2 +
(
πn
b−a

)2 =
eψa πn

b−a − eψb(−1)n πn
b−a

ψ2 +
(
πn
b−a

)2 = θZn

A.2 Proof of Proposition 2

Proof. Observe that the following derivative simplifies:

∂x

(
Xn(x)− x∂xXn(x)(

πn
b−a

)2
)

=
∂xXn(x)− x∂2xXn(x)− ∂xXn(x)(

πn
b−a

)2 = xXn(x)

which uses that ∂2xXn(x) = −
(
πn
b−a

)2
Xn(x).

Therefore ∫ b

a

xXn(x)dx =
Xn(b)− b∂xXn(b)(

πn
b−a

)2 − Xn(a)− a∂xXn(a)(
πn
b−a

)2
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By construction, Xn(b) = Xn(a) = 0:

=
a∂xXn(a)− b∂xXn(b)(

πn
b−a

)2 =
a πn
b−a − b πn

b−a(−1)n(
πn
b−a

)2 = θZn

A.3 Proof of Proposition 3

Observe that the following derivative simplifies:

∂x

(
−x2∂xXn(x) + 2xXn(x)(

πn
b−a

)2 − 2∂xXn(x)(
πn
b−a

)4
)

=
−2x∂xXn(x)− x2∂2xXn(x) + 2Xn(x) + 2x∂xXn(x)(

πn
b−a

)2 − 2∂2xXn(x)(
πn
b−a

)4 = x2Xn(x)

which uses that ∂2xXn(x) = −
(
πn
b−a

)2
Xn(x).

Therefore∫ b

a

x2Xn(x)dx = −b
2∂xXn(b)(

πn
b−a

)2 − 2∂xXn(b)(
πn
b−a

)4 +
a2∂xXn(a)(

πn
b−a

)2 +
2∂xXn(a)(

πn
b−a

)4
because Xn(b) = Xn(a) = 0 by construction.

=

(
a2(
πn
b−a

)2 +
2(
πn
b−a

)4
)
∂xXn(a)−

(
b2(
πn
b−a

)2 +
2(
πn
b−a

)4
)
∂xXn(b)

=

(
a2(
πn
b−a

)2 +
2(
πn
b−a

)4
)

πn

b− a
−

(
b2(
πn
b−a

)2 +
2(
πn
b−a

)4
)

πn

b− a
(−1)n

A.4 Proof of Lemma 5

Proof. With the modified non-homogeneous term, the conditional solution (4) be-

comes

h(x, t) =

∫ b

a

ϕ(y)G(x, y, t)dy +

∫ t

0

∫ b

a

δ(y)eφ1s(F (s) + φ2)G(x, y, t− s)dyds (13)
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substitute with the Green’s function:

h(x, t) =

∫ b

a

ϕ(y)
∞∑
n=1

Xn(x)Xn(y)Tn(t)dy+

∫ t

0

∫ b

a

δ(y)eφ1s(F (s)+φ2)
∞∑
n=1

Xn(x)Xn(y)Tn(t−s)dyds

=
∞∑
n=1

Xn(x)anTn(t) +
∞∑
n=1

Xn(x)bn

∫ t

0

eφ1s(F (s) + φ2)Tn(t− s)ds

Collect coefficients on Xn(x):

Sn(t) = anTn(t) + bn

∫ t

0

eφ1s(F (s) + φ2)Tn(t− s)ds

Then apply the weighted sum F (t) =
∑∞

n=1 θnSn(t) (Lemma 3):

F (t) =
∞∑
n=1

θnanTn(t)+
∞∑
n=1

φ2θnbn

∫ t

0

eφ1sTn(t−s)ds+
∞∑
n=1

θnbn

∫ t

0

eφ1sF (s)Tn(t−s)ds

= αφ(t) +

∫ t

0

F (s)βφ(t− s)ds

Take the Laplace transform:

F̂ (s) = α̂(s) + F̂ (s)β̂φ(s) =
α̂(s)

1− β̂φ(s)

B The Stationary Distribution

The stationary distribution h̄(x) ≡ limt→∞ h(x, t) solves the KFE with ∂th(x, t) = 0:

0 = γ∂2xh̄(x) + δ(x)F (14)

where F ≡ limt→∞ F (t) is the limiting flow. Corollary 2 gives the solution.

Corollary 2. The stationary distribution h(x) is given by

h(x) =


2(x−a)
−a(b−a) a ≤ x ≤ 0

2(b−x)
b(b−a) 0 ≤ x ≤ b
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and the limiting flow is

F =
2

−ab

Proof. The stationary equation (14) implies that h(x) is linear for x ̸= 0. This implies

h(x) is of the form

h(x) =

d1x+ c1 a ≤ x < 0

d2x+ c2 0 > x ≤ b

The continuity condition requires

c1 = c2

while the boundary conditions require

d1a+ c1 = 0 d2b+ c2 = 0

Combine these three equations to solve for the remaining coefficients in terms of c1:

d1 = −c1
a

d2 = −c1
b

The mass conservation condition says that h(x) must integrate to 1. h(x) is a triangle

with height c1, so the integral is given by:

1 =
1

2
(b− a)c1

This implies that the linear terms are

c1 =
2

b− a
= c2 d1 = − 2

(b− a)a
d2 = − 2

(b− a)b

which simplify by

d1x+ c1 =
(
−x
a
+ 1
) 2

b− a
=

2 (x− a)

−a(b− a)

d2x+ c2 =
(
−x
b
+ 1
) 2

b− a
=

2 (b− x)

b(b− a)

The limiting flow is

F = ∂xh(a)− ∂xh(b)
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= d1 − d2 =
2

−a(b− a)
+

2

b(b− a)
=

2

−ab

In the Section 5 model, the barriers are b = 1 and a = −1. Figure 1a plots this

stationary distribution as implied by Corollary 2.
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